Handle parsing errors
Occasionally the LLM cannot determine what step to take because it outputs format in incorrect form to be handled by the output parser. In this case, by default the agent errors. But you can easily control this functionality with handle_parsing_errors
! Let's explore how.
Setupβ
from langchain import (
OpenAI,
LLMMathChain,
SerpAPIWrapper,
SQLDatabase,
SQLDatabaseChain,
)
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
from langchain.chat_models import ChatOpenAI
from langchain.agents.types import AGENT_TO_CLASS
API Reference:
- initialize_agent from
langchain.agents
- AgentType from
langchain.agents
- ChatOpenAI from
langchain.chat_models
search = SerpAPIWrapper()
tools = [
Tool(
name="Search",
func=search.run,
description="useful for when you need to answer questions about current events. You should ask targeted questions",
),
]
Errorβ
In this scenario, the agent will error (because it fails to output an Action string)
mrkl = initialize_agent(
tools,
ChatOpenAI(temperature=0),
agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION,
verbose=True,
)
mrkl.run("Who is Leo DiCaprio's girlfriend? No need to add Action")
> Entering new AgentExecutor chain...
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
File ~/workplace/langchain/langchain/agents/chat/output_parser.py:21, in ChatOutputParser.parse(self, text)
20 try:
---> 21 action = text.split("```")[1]
22 response = json.loads(action.strip())
IndexError: list index out of range
During handling of the above exception, another exception occurred:
OutputParserException Traceback (most recent call last)
Cell In[4], line 1
----> 1 mrkl.run("Who is Leo DiCaprio's girlfriend? No need to add Action")
File ~/workplace/langchain/langchain/chains/base.py:236, in Chain.run(self, callbacks, *args, **kwargs)
234 if len(args) != 1:
235 raise ValueError("`run` supports only one positional argument.")
--> 236 return self(args[0], callbacks=callbacks)[self.output_keys[0]]
238 if kwargs and not args:
239 return self(kwargs, callbacks=callbacks)[self.output_keys[0]]
File ~/workplace/langchain/langchain/chains/base.py:140, in Chain.__call__(self, inputs, return_only_outputs, callbacks)
138 except (KeyboardInterrupt, Exception) as e:
139 run_manager.on_chain_error(e)
--> 140 raise e
141 run_manager.on_chain_end(outputs)
142 return self.prep_outputs(inputs, outputs, return_only_outputs)
File ~/workplace/langchain/langchain/chains/base.py:134, in Chain.__call__(self, inputs, return_only_outputs, callbacks)
128 run_manager = callback_manager.on_chain_start(
129 {"name": self.__class__.__name__},
130 inputs,
131 )
132 try:
133 outputs = (
--> 134 self._call(inputs, run_manager=run_manager)
135 if new_arg_supported
136 else self._call(inputs)
137 )
138 except (KeyboardInterrupt, Exception) as e:
139 run_manager.on_chain_error(e)
File ~/workplace/langchain/langchain/agents/agent.py:947, in AgentExecutor._call(self, inputs, run_manager)
945 # We now enter the agent loop (until it returns something).
946 while self._should_continue(iterations, time_elapsed):
--> 947 next_step_output = self._take_next_step(
948 name_to_tool_map,
949 color_mapping,
950 inputs,
951 intermediate_steps,
952 run_manager=run_manager,
953 )
954 if isinstance(next_step_output, AgentFinish):
955 return self._return(
956 next_step_output, intermediate_steps, run_manager=run_manager
957 )
File ~/workplace/langchain/langchain/agents/agent.py:773, in AgentExecutor._take_next_step(self, name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager)
771 raise_error = False
772 if raise_error:
--> 773 raise e
774 text = str(e)
775 if isinstance(self.handle_parsing_errors, bool):
File ~/workplace/langchain/langchain/agents/agent.py:762, in AgentExecutor._take_next_step(self, name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager)
756 """Take a single step in the thought-action-observation loop.
757
758 Override this to take control of how the agent makes and acts on choices.
759 """
760 try:
761 # Call the LLM to see what to do.
--> 762 output = self.agent.plan(
763 intermediate_steps,
764 callbacks=run_manager.get_child() if run_manager else None,
765 **inputs,
766 )
767 except OutputParserException as e:
768 if isinstance(self.handle_parsing_errors, bool):
File ~/workplace/langchain/langchain/agents/agent.py:444, in Agent.plan(self, intermediate_steps, callbacks, **kwargs)
442 full_inputs = self.get_full_inputs(intermediate_steps, **kwargs)
443 full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs)
--> 444 return self.output_parser.parse(full_output)
File ~/workplace/langchain/langchain/agents/chat/output_parser.py:26, in ChatOutputParser.parse(self, text)
23 return AgentAction(response["action"], response["action_input"], text)
25 except Exception:
---> 26 raise OutputParserException(f"Could not parse LLM output: {text}")
OutputParserException: Could not parse LLM output: I'm sorry, but I cannot provide an answer without an Action. Please provide a valid Action in the format specified above.
Default error handlingβ
Handle errors with Invalid or incomplete response
mrkl = initialize_agent(
tools,
ChatOpenAI(temperature=0),
agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION,
verbose=True,
handle_parsing_errors=True,
)
mrkl.run("Who is Leo DiCaprio's girlfriend? No need to add Action")
> Entering new AgentExecutor chain...
Observation: Invalid or incomplete response
Thought:
Observation: Invalid or incomplete response
Thought:Search for Leo DiCaprio's current girlfriend
Action:
```
{
"action": "Search",
"action_input": "Leo DiCaprio current girlfriend"
}
```
Observation: Just Jared on Instagram: βLeonardo DiCaprio & girlfriend Camila Morrone couple up for a lunch date!
Thought:Camila Morrone is currently Leo DiCaprio's girlfriend
Final Answer: Camila Morrone
> Finished chain.
'Camila Morrone'
Custom Error Messageβ
You can easily customize the message to use when there are parsing errors
mrkl = initialize_agent(
tools,
ChatOpenAI(temperature=0),
agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION,
verbose=True,
handle_parsing_errors="Check your output and make sure it conforms!",
)
mrkl.run("Who is Leo DiCaprio's girlfriend? No need to add Action")
> Entering new AgentExecutor chain...
Observation: Could not parse LLM output: I'm sorry, but I canno
Thought:I need to use the Search tool to find the answer to the question.
Action:
```
{
"action": "Search",
"action_input": "Who is Leo DiCaprio's girlfriend?"
}
```
Observation: DiCaprio broke up with girlfriend Camila Morrone, 25, in the summer of 2022, after dating for four years. He's since been linked to another famous supermodel β Gigi Hadid. The power couple were first supposedly an item in September after being spotted getting cozy during a party at New York Fashion Week.
Thought:The answer to the question is that Leo DiCaprio's current girlfriend is Gigi Hadid.
Final Answer: Gigi Hadid.
> Finished chain.
'Gigi Hadid.'
Custom Error Functionβ
You can also customize the error to be a function that takes the error in and outputs a string.
def _handle_error(error) -> str:
return str(error)[:50]
mrkl = initialize_agent(
tools,
ChatOpenAI(temperature=0),
agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION,
verbose=True,
handle_parsing_errors=_handle_error,
)
mrkl.run("Who is Leo DiCaprio's girlfriend? No need to add Action")
> Entering new AgentExecutor chain...
Observation: Could not parse LLM output: I'm sorry, but I canno
Thought:I need to use the Search tool to find the answer to the question.
Action:
```
{
"action": "Search",
"action_input": "Who is Leo DiCaprio's girlfriend?"
}
```
Observation: DiCaprio broke up with girlfriend Camila Morrone, 25, in the summer of 2022, after dating for four years. He's since been linked to another famous supermodel β Gigi Hadid. The power couple were first supposedly an item in September after being spotted getting cozy during a party at New York Fashion Week.
Thought:The current girlfriend of Leonardo DiCaprio is Gigi Hadid.
Final Answer: Gigi Hadid.
> Finished chain.
'Gigi Hadid.'