Skip to main content

Add Memory to OpenAI Functions Agent

This notebook goes over how to add memory to OpenAI Functions agent.

from langchain import (
LLMMathChain,
OpenAI,
SerpAPIWrapper,
SQLDatabase,
SQLDatabaseChain,
)
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
from langchain.chat_models import ChatOpenAI

API Reference:

    /Users/harrisonchase/.pyenv/versions/3.9.1/envs/langchain/lib/python3.9/site-packages/deeplake/util/check_latest_version.py:32: UserWarning: A newer version of deeplake (3.6.4) is available. It's recommended that you update to the latest version using `pip install -U deeplake`.
warnings.warn(
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
search = SerpAPIWrapper()
llm_math_chain = LLMMathChain.from_llm(llm=llm, verbose=True)
db = SQLDatabase.from_uri("sqlite:///../../../../../notebooks/Chinook.db")
db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)
tools = [
Tool(
name="Search",
func=search.run,
description="useful for when you need to answer questions about current events. You should ask targeted questions",
),
Tool(
name="Calculator",
func=llm_math_chain.run,
description="useful for when you need to answer questions about math",
),
Tool(
name="FooBar-DB",
func=db_chain.run,
description="useful for when you need to answer questions about FooBar. Input should be in the form of a question containing full context",
),
]
from langchain.prompts import MessagesPlaceholder
from langchain.memory import ConversationBufferMemory

agent_kwargs = {
"extra_prompt_messages": [MessagesPlaceholder(variable_name="memory")],
}
memory = ConversationBufferMemory(memory_key="memory", return_messages=True)

API Reference:

agent = initialize_agent(
tools,
llm,
agent=AgentType.OPENAI_FUNCTIONS,
verbose=True,
agent_kwargs=agent_kwargs,
memory=memory,
)
agent.run("hi")
    

> Entering new chain...
Hello! How can I assist you today?

> Finished chain.





'Hello! How can I assist you today?'
agent.run("my name is bob")
    

> Entering new chain...
Nice to meet you, Bob! How can I help you today?

> Finished chain.





'Nice to meet you, Bob! How can I help you today?'
agent.run("whats my name")
    

> Entering new chain...
Your name is Bob.

> Finished chain.





'Your name is Bob.'