Metal
Metal is a managed service for ML Embeddings.
This notebook shows how to use Metal's retriever.
First, you will need to sign up for Metal and get an API key. You can do so here
# !pip install metal_sdk
from metal_sdk.metal import Metal
API_KEY = ""
CLIENT_ID = ""
INDEX_ID = ""
metal = Metal(API_KEY, CLIENT_ID, INDEX_ID);
Ingest Documents
You only need to do this if you haven't already set up an index
metal.index({"text": "foo1"})
metal.index({"text": "foo"})
{'data': {'id': '642739aa7559b026b4430e42',
'text': 'foo',
'createdAt': '2023-03-31T19:51:06.748Z'}}
Query
Now that our index is set up, we can set up a retriever and start querying it.
from langchain.retrievers import MetalRetriever
API Reference:
- MetalRetriever from
langchain.retrievers
retriever = MetalRetriever(metal, params={"limit": 2})
retriever.get_relevant_documents("foo1")
[Document(page_content='foo1', metadata={'dist': '1.19209289551e-07', 'id': '642739a17559b026b4430e40', 'createdAt': '2023-03-31T19:50:57.853Z'}),
Document(page_content='foo1', metadata={'dist': '4.05311584473e-06', 'id': '642738f67559b026b4430e3c', 'createdAt': '2023-03-31T19:48:06.769Z'})]