ChatGPT Plugin
OpenAI plugins connect ChatGPT to third-party applications. These plugins enable ChatGPT to interact with APIs defined by developers, enhancing ChatGPT's capabilities and allowing it to perform a wide range of actions.
Plugins can allow ChatGPT to do things like:
- Retrieve real-time information; e.g., sports scores, stock prices, the latest news, etc.
- Retrieve knowledge-base information; e.g., company docs, personal notes, etc.
- Perform actions on behalf of the user; e.g., booking a flight, ordering food, etc.
This notebook shows how to use the ChatGPT Retriever Plugin within LangChain.
# STEP 1: Load
# Load documents using LangChain's DocumentLoaders
# This is from https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/csv.html
from langchain.document_loaders.csv_loader import CSVLoader
loader = CSVLoader(
file_path="../../document_loaders/examples/example_data/mlb_teams_2012.csv"
)
data = loader.load()
# STEP 2: Convert
# Convert Document to format expected by https://github.com/openai/chatgpt-retrieval-plugin
from typing import List
from langchain.docstore.document import Document
import json
def write_json(path: str, documents: List[Document]) -> None:
results = [{"text": doc.page_content} for doc in documents]
with open(path, "w") as f:
json.dump(results, f, indent=2)
write_json("foo.json", data)
# STEP 3: Use
# Ingest this as you would any other json file in https://github.com/openai/chatgpt-retrieval-plugin/tree/main/scripts/process_json
API Reference:
Using the ChatGPT Retriever Plugin
Okay, so we've created the ChatGPT Retriever Plugin, but how do we actually use it?
The below code walks through how to do that.
We want to use ChatGPTPluginRetriever
so we have to get the OpenAI API Key.
import os
import getpass
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
OpenAI API Key: ········
from langchain.retrievers import ChatGPTPluginRetriever
API Reference:
- ChatGPTPluginRetriever from
langchain.retrievers
retriever = ChatGPTPluginRetriever(url="http://0.0.0.0:8000", bearer_token="foo")
retriever.get_relevant_documents("alice's phone number")
[Document(page_content="This is Alice's phone number: 123-456-7890", lookup_str='', metadata={'id': '456_0', 'metadata': {'source': 'email', 'source_id': '567', 'url': None, 'created_at': '1609592400.0', 'author': 'Alice', 'document_id': '456'}, 'embedding': None, 'score': 0.925571561}, lookup_index=0),
Document(page_content='This is a document about something', lookup_str='', metadata={'id': '123_0', 'metadata': {'source': 'file', 'source_id': 'https://example.com/doc1', 'url': 'https://example.com/doc1', 'created_at': '1609502400.0', 'author': 'Alice', 'document_id': '123'}, 'embedding': None, 'score': 0.6987589}, lookup_index=0),
Document(page_content='Team: Angels "Payroll (millions)": 154.49 "Wins": 89', lookup_str='', metadata={'id': '59c2c0c1-ae3f-4272-a1da-f44a723ea631_0', 'metadata': {'source': None, 'source_id': None, 'url': None, 'created_at': None, 'author': None, 'document_id': '59c2c0c1-ae3f-4272-a1da-f44a723ea631'}, 'embedding': None, 'score': 0.697888613}, lookup_index=0)]