Skip to main content

BM25

BM25 also known as the Okapi BM25, is a ranking function used in information retrieval systems to estimate the relevance of documents to a given search query.

This notebook goes over how to use a retriever that under the hood uses BM25 using rank_bm25 package.

# !pip install rank_bm25
from langchain.retrievers import BM25Retriever

API Reference:

    /workspaces/langchain/.venv/lib/python3.10/site-packages/deeplake/util/check_latest_version.py:32: UserWarning: A newer version of deeplake (3.6.10) is available. It's recommended that you update to the latest version using `pip install -U deeplake`.
warnings.warn(

Create New Retriever with Texts

retriever = BM25Retriever.from_texts(["foo", "bar", "world", "hello", "foo bar"])

Create a New Retriever with Documents

You can now create a new retriever with the documents you created.

from langchain.schema import Document

retriever = BM25Retriever.from_documents(
[
Document(page_content="foo"),
Document(page_content="bar"),
Document(page_content="world"),
Document(page_content="hello"),
Document(page_content="foo bar"),
]
)

API Reference:

Use Retriever

We can now use the retriever!

result = retriever.get_relevant_documents("foo")
result
    [Document(page_content='foo', metadata={}),
Document(page_content='foo bar', metadata={}),
Document(page_content='hello', metadata={}),
Document(page_content='world', metadata={})]