BM25
BM25 also known as the Okapi BM25, is a ranking function used in information retrieval systems to estimate the relevance of documents to a given search query.
This notebook goes over how to use a retriever that under the hood uses BM25 using rank_bm25
package.
# !pip install rank_bm25
from langchain.retrievers import BM25Retriever
API Reference:
- BM25Retriever from
langchain.retrievers
/workspaces/langchain/.venv/lib/python3.10/site-packages/deeplake/util/check_latest_version.py:32: UserWarning: A newer version of deeplake (3.6.10) is available. It's recommended that you update to the latest version using `pip install -U deeplake`.
warnings.warn(
Create New Retriever with Texts
retriever = BM25Retriever.from_texts(["foo", "bar", "world", "hello", "foo bar"])
Create a New Retriever with Documents
You can now create a new retriever with the documents you created.
from langchain.schema import Document
retriever = BM25Retriever.from_documents(
[
Document(page_content="foo"),
Document(page_content="bar"),
Document(page_content="world"),
Document(page_content="hello"),
Document(page_content="foo bar"),
]
)
API Reference:
- Document from
langchain.schema
Use Retriever
We can now use the retriever!
result = retriever.get_relevant_documents("foo")
result
[Document(page_content='foo', metadata={}),
Document(page_content='foo bar', metadata={}),
Document(page_content='hello', metadata={}),
Document(page_content='world', metadata={})]