MLflow AI Gateway
The MLflow AI Gateway service is a powerful tool designed to streamline the usage and management of various large language model (LLM) providers, such as OpenAI and Anthropic, within an organization. It offers a high-level interface that simplifies the interaction with these services by providing a unified endpoint to handle specific LLM related requests. See the MLflow AI Gateway documentation for more details.
Installation and Setup
Install mlflow
with MLflow AI Gateway dependencies:
pip install 'mlflow[gateway]'
Set the OpenAI API key as an environment variable:
export OPENAI_API_KEY=...
Create a configuration file:
routes:
- name: completions
route_type: llm/v1/completions
model:
provider: openai
name: text-davinci-003
config:
openai_api_key: $OPENAI_API_KEY
- name: embeddings
route_type: llm/v1/embeddings
model:
provider: openai
name: text-embedding-ada-002
config:
openai_api_key: $OPENAI_API_KEY
Start the Gateway server:
mlflow gateway start --config-path /path/to/config.yaml
Completions Example
import mlflow
from langchain import LLMChain, PromptTemplate
from langchain.llms import MlflowAIGateway
gateway = MlflowAIGateway(
gateway_uri="http://127.0.0.1:5000",
route="completions",
params={
"temperature": 0.0,
"top_p": 0.1,
},
)
llm_chain = LLMChain(
llm=gateway,
prompt=PromptTemplate(
input_variables=["adjective"],
template="Tell me a {adjective} joke",
),
)
result = llm_chain.run(adjective="funny")
print(result)
with mlflow.start_run():
model_info = mlflow.langchain.log_model(chain, "model")
model = mlflow.pyfunc.load_model(model_info.model_uri)
print(model.predict([{"adjective": "funny"}]))
API Reference:
- MlflowAIGateway from
langchain.llms
Embeddings Example
from langchain.embeddings import MlflowAIGatewayEmbeddings
embeddings = MlflowAIGatewayEmbeddings(
gateway_uri="http://127.0.0.1:5000",
route="embeddings",
)
print(embeddings.embed_query("hello"))
print(embeddings.embed_documents(["hello"]))
API Reference:
- MlflowAIGatewayEmbeddings from
langchain.embeddings
Chat Example
from langchain.chat_models import ChatMLflowAIGateway
from langchain.schema import HumanMessage, SystemMessage
chat = ChatMLflowAIGateway(
gateway_uri="http://127.0.0.1:5000",
route="chat",
params={
"temperature": 0.1
}
)
messages = [
SystemMessage(
content="You are a helpful assistant that translates English to French."
),
HumanMessage(
content="Translate this sentence from English to French: I love programming."
),
]
print(chat(messages))
API Reference:
- ChatMLflowAIGateway from
langchain.chat_models
- HumanMessage from
langchain.schema
Databricks MLflow AI Gateway
Databricks MLflow AI Gateway is in private preview. Please contact a Databricks representative to enroll in the preview.
from langchain import LLMChain, PromptTemplate
from langchain.llms import MlflowAIGateway
gateway = MlflowAIGateway(
gateway_uri="databricks",
route="completions",
)
llm_chain = LLMChain(
llm=gateway,
prompt=PromptTemplate(
input_variables=["adjective"],
template="Tell me a {adjective} joke",
),
)
result = llm_chain.run(adjective="funny")
print(result)
API Reference:
- MlflowAIGateway from
langchain.llms