Deep Lake
This page covers how to use the Deep Lake ecosystem within LangChain.
Why Deep Lake?β
- More than just a (multi-modal) vector store. You can later use the dataset to fine-tune your own LLM models.
- Not only stores embeddings, but also the original data with automatic version control.
- Truly serverless. Doesn't require another service and can be used with major cloud providers (AWS S3, GCS, etc.)
More Resourcesβ
- Ultimate Guide to LangChain & Deep Lake: Build ChatGPT to Answer Questions on Your Financial Data
- Twitter the-algorithm codebase analysis with Deep Lake
- Here is whitepaper and academic paper for Deep Lake
- Here is a set of additional resources available for review: Deep Lake, Get started andΒ Tutorials
Installation and Setupβ
- Install the Python package with
pip install deeplake
Wrappersβ
VectorStoreβ
There exists a wrapper around Deep Lake, a data lake for Deep Learning applications, allowing you to use it as a vector store (for now), whether for semantic search or example selection.
To import this vectorstore:
from langchain.vectorstores import DeepLake
API Reference:
- DeepLake from
langchain.vectorstores
For a more detailed walkthrough of the Deep Lake wrapper, see this notebook