Skip to main content

Banana

This page covers how to use the Banana ecosystem within LangChain. It is broken into two parts: installation and setup, and then references to specific Banana wrappers.

Installation and Setup

  • Install with pip install banana-dev
  • Get an Banana api key and set it as an environment variable (BANANA_API_KEY)

Define your Banana Template

If you want to use an available language model template you can find one here. This template uses the Palmyra-Base model by Writer. You can check out an example Banana repository here.

Build the Banana app

Banana Apps must include the "output" key in the return json. There is a rigid response structure.

# Return the results as a dictionary
result = {'output': result}

An example inference function would be:

def inference(model_inputs:dict) -> dict:
global model
global tokenizer

# Parse out your arguments
prompt = model_inputs.get('prompt', None)
if prompt == None:
return {'message': "No prompt provided"}

# Run the model
input_ids = tokenizer.encode(prompt, return_tensors='pt').cuda()
output = model.generate(
input_ids,
max_length=100,
do_sample=True,
top_k=50,
top_p=0.95,
num_return_sequences=1,
temperature=0.9,
early_stopping=True,
no_repeat_ngram_size=3,
num_beams=5,
length_penalty=1.5,
repetition_penalty=1.5,
bad_words_ids=[[tokenizer.encode(' ', add_prefix_space=True)[0]]]
)

result = tokenizer.decode(output[0], skip_special_tokens=True)
# Return the results as a dictionary
result = {'output': result}
return result

You can find a full example of a Banana app here.

Wrappers

LLM

There exists an Banana LLM wrapper, which you can access with

from langchain.llms import Banana

API Reference:

You need to provide a model key located in the dashboard:

llm = Banana(model_key="YOUR_MODEL_KEY")