Skip to main content

Human-in-the-loop Tool Validation

This walkthrough demonstrates how to add Human validation to any Tool. We'll do this using the HumanApprovalCallbackhandler.

Let's suppose we need to make use of the ShellTool. Adding this tool to an automated flow poses obvious risks. Let's see how we could enforce manual human approval of inputs going into this tool.

Note: We generally recommend against using the ShellTool. There's a lot of ways to misuse it, and it's not required for most use cases. We employ it here only for demonstration purposes.

from langchain.callbacks import HumanApprovalCallbackHandler
from langchain.tools import ShellTool

API Reference:

tool = ShellTool()
print(tool.run("echo Hello World!"))
    Hello World!

Adding Human Approval

Adding the default HumanApprovalCallbackHandler to the tool will make it so that a user has to manually approve every input to the tool before the command is actually executed.

tool = ShellTool(callbacks=[HumanApprovalCallbackHandler()])
print(tool.run("ls /usr"))
    Do you approve of the following input? Anything except 'Y'/'Yes' (case-insensitive) will be treated as a no.

ls /usr
yes
X11
X11R6
bin
lib
libexec
local
sbin
share
standalone

print(tool.run("ls /private"))
    Do you approve of the following input? Anything except 'Y'/'Yes' (case-insensitive) will be treated as a no.

ls /private
no



---------------------------------------------------------------------------

HumanRejectedException Traceback (most recent call last)

Cell In[17], line 1
----> 1 print(tool.run("ls /private"))


File ~/langchain/langchain/tools/base.py:257, in BaseTool.run(self, tool_input, verbose, start_color, color, callbacks, **kwargs)
255 # TODO: maybe also pass through run_manager is _run supports kwargs
256 new_arg_supported = signature(self._run).parameters.get("run_manager")
--> 257 run_manager = callback_manager.on_tool_start(
258 {"name": self.name, "description": self.description},
259 tool_input if isinstance(tool_input, str) else str(tool_input),
260 color=start_color,
261 **kwargs,
262 )
263 try:
264 tool_args, tool_kwargs = self._to_args_and_kwargs(parsed_input)


File ~/langchain/langchain/callbacks/manager.py:672, in CallbackManager.on_tool_start(self, serialized, input_str, run_id, parent_run_id, **kwargs)
669 if run_id is None:
670 run_id = uuid4()
--> 672 _handle_event(
673 self.handlers,
674 "on_tool_start",
675 "ignore_agent",
676 serialized,
677 input_str,
678 run_id=run_id,
679 parent_run_id=self.parent_run_id,
680 **kwargs,
681 )
683 return CallbackManagerForToolRun(
684 run_id, self.handlers, self.inheritable_handlers, self.parent_run_id
685 )


File ~/langchain/langchain/callbacks/manager.py:157, in _handle_event(handlers, event_name, ignore_condition_name, *args, **kwargs)
155 except Exception as e:
156 if handler.raise_error:
--> 157 raise e
158 logging.warning(f"Error in {event_name} callback: {e}")


File ~/langchain/langchain/callbacks/manager.py:139, in _handle_event(handlers, event_name, ignore_condition_name, *args, **kwargs)
135 try:
136 if ignore_condition_name is None or not getattr(
137 handler, ignore_condition_name
138 ):
--> 139 getattr(handler, event_name)(*args, **kwargs)
140 except NotImplementedError as e:
141 if event_name == "on_chat_model_start":


File ~/langchain/langchain/callbacks/human.py:48, in HumanApprovalCallbackHandler.on_tool_start(self, serialized, input_str, run_id, parent_run_id, **kwargs)
38 def on_tool_start(
39 self,
40 serialized: Dict[str, Any],
(...)
45 **kwargs: Any,
46 ) -> Any:
47 if self._should_check(serialized) and not self._approve(input_str):
---> 48 raise HumanRejectedException(
49 f"Inputs {input_str} to tool {serialized} were rejected."
50 )


HumanRejectedException: Inputs ls /private to tool {'name': 'terminal', 'description': 'Run shell commands on this MacOS machine.'} were rejected.

Configuring Human Approval

Let's suppose we have an agent that takes in multiple tools, and we want it to only trigger human approval requests on certain tools and certain inputs. We can configure out callback handler to do just this.

from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.llms import OpenAI

API Reference:

def _should_check(serialized_obj: dict) -> bool:
# Only require approval on ShellTool.
return serialized_obj.get("name") == "terminal"


def _approve(_input: str) -> bool:
if _input == "echo 'Hello World'":
return True
msg = (
"Do you approve of the following input? "
"Anything except 'Y'/'Yes' (case-insensitive) will be treated as a no."
)
msg += "\n\n" + _input + "\n"
resp = input(msg)
return resp.lower() in ("yes", "y")


callbacks = [HumanApprovalCallbackHandler(should_check=_should_check, approve=_approve)]
llm = OpenAI(temperature=0)
tools = load_tools(["wikipedia", "llm-math", "terminal"], llm=llm)
agent = initialize_agent(
tools,
llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
)
agent.run(
"It's 2023 now. How many years ago did Konrad Adenauer become Chancellor of Germany.",
callbacks=callbacks,
)
    'Konrad Adenauer became Chancellor of Germany in 1949, 74 years ago.'
agent.run("print 'Hello World' in the terminal", callbacks=callbacks)
    'Hello World'
agent.run("list all directories in /private", callbacks=callbacks)
    Do you approve of the following input? Anything except 'Y'/'Yes' (case-insensitive) will be treated as a no.

ls /private
no



---------------------------------------------------------------------------

HumanRejectedException Traceback (most recent call last)

Cell In[39], line 1
----> 1 agent.run("list all directories in /private", callbacks=callbacks)


File ~/langchain/langchain/chains/base.py:236, in Chain.run(self, callbacks, *args, **kwargs)
234 if len(args) != 1:
235 raise ValueError("`run` supports only one positional argument.")
--> 236 return self(args[0], callbacks=callbacks)[self.output_keys[0]]
238 if kwargs and not args:
239 return self(kwargs, callbacks=callbacks)[self.output_keys[0]]


File ~/langchain/langchain/chains/base.py:140, in Chain.__call__(self, inputs, return_only_outputs, callbacks)
138 except (KeyboardInterrupt, Exception) as e:
139 run_manager.on_chain_error(e)
--> 140 raise e
141 run_manager.on_chain_end(outputs)
142 return self.prep_outputs(inputs, outputs, return_only_outputs)


File ~/langchain/langchain/chains/base.py:134, in Chain.__call__(self, inputs, return_only_outputs, callbacks)
128 run_manager = callback_manager.on_chain_start(
129 {"name": self.__class__.__name__},
130 inputs,
131 )
132 try:
133 outputs = (
--> 134 self._call(inputs, run_manager=run_manager)
135 if new_arg_supported
136 else self._call(inputs)
137 )
138 except (KeyboardInterrupt, Exception) as e:
139 run_manager.on_chain_error(e)


File ~/langchain/langchain/agents/agent.py:953, in AgentExecutor._call(self, inputs, run_manager)
951 # We now enter the agent loop (until it returns something).
952 while self._should_continue(iterations, time_elapsed):
--> 953 next_step_output = self._take_next_step(
954 name_to_tool_map,
955 color_mapping,
956 inputs,
957 intermediate_steps,
958 run_manager=run_manager,
959 )
960 if isinstance(next_step_output, AgentFinish):
961 return self._return(
962 next_step_output, intermediate_steps, run_manager=run_manager
963 )


File ~/langchain/langchain/agents/agent.py:820, in AgentExecutor._take_next_step(self, name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager)
818 tool_run_kwargs["llm_prefix"] = ""
819 # We then call the tool on the tool input to get an observation
--> 820 observation = tool.run(
821 agent_action.tool_input,
822 verbose=self.verbose,
823 color=color,
824 callbacks=run_manager.get_child() if run_manager else None,
825 **tool_run_kwargs,
826 )
827 else:
828 tool_run_kwargs = self.agent.tool_run_logging_kwargs()


File ~/langchain/langchain/tools/base.py:257, in BaseTool.run(self, tool_input, verbose, start_color, color, callbacks, **kwargs)
255 # TODO: maybe also pass through run_manager is _run supports kwargs
256 new_arg_supported = signature(self._run).parameters.get("run_manager")
--> 257 run_manager = callback_manager.on_tool_start(
258 {"name": self.name, "description": self.description},
259 tool_input if isinstance(tool_input, str) else str(tool_input),
260 color=start_color,
261 **kwargs,
262 )
263 try:
264 tool_args, tool_kwargs = self._to_args_and_kwargs(parsed_input)


File ~/langchain/langchain/callbacks/manager.py:672, in CallbackManager.on_tool_start(self, serialized, input_str, run_id, parent_run_id, **kwargs)
669 if run_id is None:
670 run_id = uuid4()
--> 672 _handle_event(
673 self.handlers,
674 "on_tool_start",
675 "ignore_agent",
676 serialized,
677 input_str,
678 run_id=run_id,
679 parent_run_id=self.parent_run_id,
680 **kwargs,
681 )
683 return CallbackManagerForToolRun(
684 run_id, self.handlers, self.inheritable_handlers, self.parent_run_id
685 )


File ~/langchain/langchain/callbacks/manager.py:157, in _handle_event(handlers, event_name, ignore_condition_name, *args, **kwargs)
155 except Exception as e:
156 if handler.raise_error:
--> 157 raise e
158 logging.warning(f"Error in {event_name} callback: {e}")


File ~/langchain/langchain/callbacks/manager.py:139, in _handle_event(handlers, event_name, ignore_condition_name, *args, **kwargs)
135 try:
136 if ignore_condition_name is None or not getattr(
137 handler, ignore_condition_name
138 ):
--> 139 getattr(handler, event_name)(*args, **kwargs)
140 except NotImplementedError as e:
141 if event_name == "on_chat_model_start":


File ~/langchain/langchain/callbacks/human.py:48, in HumanApprovalCallbackHandler.on_tool_start(self, serialized, input_str, run_id, parent_run_id, **kwargs)
38 def on_tool_start(
39 self,
40 serialized: Dict[str, Any],
(...)
45 **kwargs: Any,
46 ) -> Any:
47 if self._should_check(serialized) and not self._approve(input_str):
---> 48 raise HumanRejectedException(
49 f"Inputs {input_str} to tool {serialized} were rejected."
50 )


HumanRejectedException: Inputs ls /private to tool {'name': 'terminal', 'description': 'Run shell commands on this MacOS machine.'} were rejected.