Skip to main content

Simulated Environment: Gymnasium

For many applications of LLM agents, the environment is real (internet, database, REPL, etc). However, we can also define agents to interact in simulated environments like text-based games. This is an example of how to create a simple agent-environment interaction loop with Gymnasium (formerly OpenAI Gym).

pip install gymnasium
import gymnasium as gym
import inspect
import tenacity

from langchain.chat_models import ChatOpenAI
from langchain.schema import (
AIMessage,
HumanMessage,
SystemMessage,
BaseMessage,
)
from langchain.output_parsers import RegexParser

API Reference:

Define the agent

class GymnasiumAgent:
@classmethod
def get_docs(cls, env):
return env.unwrapped.__doc__

def __init__(self, model, env):
self.model = model
self.env = env
self.docs = self.get_docs(env)

self.instructions = """
Your goal is to maximize your return, i.e. the sum of the rewards you receive.
I will give you an observation, reward, terminiation flag, truncation flag, and the return so far, formatted as:

Observation: <observation>
Reward: <reward>
Termination: <termination>
Truncation: <truncation>
Return: <sum_of_rewards>

You will respond with an action, formatted as:

Action: <action>

where you replace <action> with your actual action.
Do nothing else but return the action.
"""
self.action_parser = RegexParser(
regex=r"Action: (.*)", output_keys=["action"], default_output_key="action"
)

self.message_history = []
self.ret = 0

def random_action(self):
action = self.env.action_space.sample()
return action

def reset(self):
self.message_history = [
SystemMessage(content=self.docs),
SystemMessage(content=self.instructions),
]

def observe(self, obs, rew=0, term=False, trunc=False, info=None):
self.ret += rew

obs_message = f"""
Observation: {obs}
Reward: {rew}
Termination: {term}
Truncation: {trunc}
Return: {self.ret}
"""
self.message_history.append(HumanMessage(content=obs_message))
return obs_message

def _act(self):
act_message = self.model(self.message_history)
self.message_history.append(act_message)
action = int(self.action_parser.parse(act_message.content)["action"])
return action

def act(self):
try:
for attempt in tenacity.Retrying(
stop=tenacity.stop_after_attempt(2),
wait=tenacity.wait_none(), # No waiting time between retries
retry=tenacity.retry_if_exception_type(ValueError),
before_sleep=lambda retry_state: print(
f"ValueError occurred: {retry_state.outcome.exception()}, retrying..."
),
):
with attempt:
action = self._act()
except tenacity.RetryError as e:
action = self.random_action()
return action

Initialize the simulated environment and agent

env = gym.make("Blackjack-v1")
agent = GymnasiumAgent(model=ChatOpenAI(temperature=0.2), env=env)

Main loop

observation, info = env.reset()
agent.reset()

obs_message = agent.observe(observation)
print(obs_message)

while True:
action = agent.act()
observation, reward, termination, truncation, info = env.step(action)
obs_message = agent.observe(observation, reward, termination, truncation, info)
print(f"Action: {action}")
print(obs_message)

if termination or truncation:
print("break", termination, truncation)
break
env.close()
    
Observation: (15, 4, 0)
Reward: 0
Termination: False
Truncation: False
Return: 0

Action: 1

Observation: (25, 4, 0)
Reward: -1.0
Termination: True
Truncation: False
Return: -1.0

break True False