Skip to main content

ConversationTokenBufferMemory

ConversationTokenBufferMemory keeps a buffer of recent interactions in memory, and uses token length rather than number of interactions to determine when to flush interactions.

Let's first walk through how to use the utilities

from langchain.memory import ConversationTokenBufferMemory
from langchain.llms import OpenAI

llm = OpenAI()

API Reference:

memory = ConversationTokenBufferMemory(llm=llm, max_token_limit=10)
memory.save_context({"input": "hi"}, {"output": "whats up"})
memory.save_context({"input": "not much you"}, {"output": "not much"})
memory.load_memory_variables({})
    {'history': 'Human: not much you\nAI: not much'}

We can also get the history as a list of messages (this is useful if you are using this with a chat model).

memory = ConversationTokenBufferMemory(
llm=llm, max_token_limit=10, return_messages=True
)
memory.save_context({"input": "hi"}, {"output": "whats up"})
memory.save_context({"input": "not much you"}, {"output": "not much"})

Using in a chain

Let's walk through an example, again setting verbose=True so we can see the prompt.

from langchain.chains import ConversationChain

conversation_with_summary = ConversationChain(
llm=llm,
# We set a very low max_token_limit for the purposes of testing.
memory=ConversationTokenBufferMemory(llm=OpenAI(), max_token_limit=60),
verbose=True,
)
conversation_with_summary.predict(input="Hi, what's up?")

API Reference:

    

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.

Current conversation:

Human: Hi, what's up?
AI:

> Finished chain.





" Hi there! I'm doing great, just enjoying the day. How about you?"
conversation_with_summary.predict(input="Just working on writing some documentation!")
    

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.

Current conversation:
Human: Hi, what's up?
AI: Hi there! I'm doing great, just enjoying the day. How about you?
Human: Just working on writing some documentation!
AI:

> Finished chain.





' Sounds like a productive day! What kind of documentation are you writing?'
conversation_with_summary.predict(input="For LangChain! Have you heard of it?")
    

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.

Current conversation:
Human: Hi, what's up?
AI: Hi there! I'm doing great, just enjoying the day. How about you?
Human: Just working on writing some documentation!
AI: Sounds like a productive day! What kind of documentation are you writing?
Human: For LangChain! Have you heard of it?
AI:

> Finished chain.





" Yes, I have heard of LangChain! It is a decentralized language-learning platform that connects native speakers and learners in real time. Is that the documentation you're writing about?"
# We can see here that the buffer is updated
conversation_with_summary.predict(
input="Haha nope, although a lot of people confuse it for that"
)
    

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.

Current conversation:
Human: For LangChain! Have you heard of it?
AI: Yes, I have heard of LangChain! It is a decentralized language-learning platform that connects native speakers and learners in real time. Is that the documentation you're writing about?
Human: Haha nope, although a lot of people confuse it for that
AI:

> Finished chain.





" Oh, I see. Is there another language learning platform you're referring to?"