DeepLake self-querying
DeepLake is a multimodal database for building AI applications.
In the notebook we'll demo the SelfQueryRetriever
wrapped around a DeepLake vector store.
Creating a DeepLake vectorstore
First we'll want to create a DeepLake VectorStore and seed it with some data. We've created a small demo set of documents that contain summaries of movies.
NOTE: The self-query retriever requires you to have lark
installed (pip install lark
). We also need the deeplake
package.
#!pip install lark
#!pip install 'deeplake[enterprise]'
We want to use OpenAIEmbeddings
so we have to get the OpenAI API Key.
import os
import getpass
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
from langchain.schema import Document
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import DeepLake
embeddings = OpenAIEmbeddings()
API Reference:
- Document from
langchain.schema
- OpenAIEmbeddings from
langchain.embeddings.openai
- DeepLake from
langchain.vectorstores
docs = [
Document(
page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose",
metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"},
),
Document(
page_content="Leo DiCaprio gets lost in a dream within a dream within a dream within a ...",
metadata={"year": 2010, "director": "Christopher Nolan", "rating": 8.2},
),
Document(
page_content="A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea",
metadata={"year": 2006, "director": "Satoshi Kon", "rating": 8.6},
),
Document(
page_content="A bunch of normal-sized women are supremely wholesome and some men pine after them",
metadata={"year": 2019, "director": "Greta Gerwig", "rating": 8.3},
),
Document(
page_content="Toys come alive and have a blast doing so",
metadata={"year": 1995, "genre": "animated"},
),
Document(
page_content="Three men walk into the Zone, three men walk out of the Zone",
metadata={
"year": 1979,
"rating": 9.9,
"director": "Andrei Tarkovsky",
"genre": "science fiction",
"rating": 9.9,
},
),
]
username_or_org = "<USER_NAME_OR_ORG>"
vectorstore = DeepLake.from_documents(
docs, embeddings, dataset_path=f"hub://{username_or_org}/self_queery"
)
Your Deep Lake dataset has been successfully created!
-
Dataset(path='hub://adilkhan/self_queery', tensors=['embedding', 'id', 'metadata', 'text'])
tensor htype shape dtype compression
------- ------- ------- ------- -------
embedding embedding (6, 1536) float32 None
id text (6, 1) str None
metadata json (6, 1) str None
text text (6, 1) str None
Creating our self-querying retriever
Now we can instantiate our retriever. To do this we'll need to provide some information upfront about the metadata fields that our documents support and a short description of the document contents.
from langchain.llms import OpenAI
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.chains.query_constructor.base import AttributeInfo
metadata_field_info = [
AttributeInfo(
name="genre",
description="The genre of the movie",
type="string or list[string]",
),
AttributeInfo(
name="year",
description="The year the movie was released",
type="integer",
),
AttributeInfo(
name="director",
description="The name of the movie director",
type="string",
),
AttributeInfo(
name="rating", description="A 1-10 rating for the movie", type="float"
),
]
document_content_description = "Brief summary of a movie"
llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(
llm, vectorstore, document_content_description, metadata_field_info, verbose=True
)
API Reference:
- OpenAI from
langchain.llms
- SelfQueryRetriever from
langchain.retrievers.self_query.base
- AttributeInfo from
langchain.chains.query_constructor.base
Testing it out
And now we can try actually using our retriever!
# This example only specifies a relevant query
retriever.get_relevant_documents("What are some movies about dinosaurs")
/Users/adilkhansarsen/Documents/work/LangChain/langchain/langchain/chains/llm.py:275: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.
warnings.warn(
query='dinosaur' filter=None limit=None
[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.7, 'genre': 'science fiction'}),
Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'}),
Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'}),
Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.6})]
# This example only specifies a filter
retriever.get_relevant_documents("I want to watch a movie rated higher than 8.5")
query=' ' filter=Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5) limit=None
[Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.6}),
Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'})]
# This example specifies a query and a filter
retriever.get_relevant_documents("Has Greta Gerwig directed any movies about women")
query='women' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='director', value='Greta Gerwig') limit=None
[Document(page_content='A bunch of normal-sized women are supremely wholesome and some men pine after them', metadata={'year': 2019, 'director': 'Greta Gerwig', 'rating': 8.3})]
# This example specifies a composite filter
retriever.get_relevant_documents(
"What's a highly rated (above 8.5) science fiction film?"
)
query=' ' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GTE: 'gte'>, attribute='rating', value=8.5), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='science fiction')]) limit=None
[Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'})]
# This example specifies a query and composite filter
retriever.get_relevant_documents(
"What's a movie after 1990 but before 2005 that's all about toys, and preferably is animated"
)
query='toys' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GT: 'gt'>, attribute='year', value=1990), Comparison(comparator=<Comparator.LT: 'lt'>, attribute='year', value=2005), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='animated')]) limit=None
[Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'})]
Filter k
We can also use the self query retriever to specify k
: the number of documents to fetch.
We can do this by passing enable_limit=True
to the constructor.
retriever = SelfQueryRetriever.from_llm(
llm,
vectorstore,
document_content_description,
metadata_field_info,
enable_limit=True,
verbose=True,
)
# This example only specifies a relevant query
retriever.get_relevant_documents("what are two movies about dinosaurs")
query='dinosaur' filter=None limit=2
[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.7, 'genre': 'science fiction'}),
Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'})]