Skip to main content

Transformation

This notebook showcases using a generic transformation chain.

As an example, we will create a dummy transformation that takes in a super long text, filters the text to only the first 3 paragraphs, and then passes that into an LLMChain to summarize those.

from langchain.chains import TransformChain, LLMChain, SimpleSequentialChain
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate

API Reference:

with open("../../state_of_the_union.txt") as f:
state_of_the_union = f.read()
def transform_func(inputs: dict) -> dict:
text = inputs["text"]
shortened_text = "\n\n".join(text.split("\n\n")[:3])
return {"output_text": shortened_text}


transform_chain = TransformChain(
input_variables=["text"], output_variables=["output_text"], transform=transform_func
)
template = """Summarize this text:

{output_text}

Summary:"""
prompt = PromptTemplate(input_variables=["output_text"], template=template)
llm_chain = LLMChain(llm=OpenAI(), prompt=prompt)
sequential_chain = SimpleSequentialChain(chains=[transform_chain, llm_chain])
sequential_chain.run(state_of_the_union)
    ' The speaker addresses the nation, noting that while last year they were kept apart due to COVID-19, this year they are together again. They are reminded that regardless of their political affiliations, they are all Americans.'