Custom callback handlers
You can create a custom handler to set on the object as well. In the example below, we'll implement streaming with a custom handler.
from langchain.callbacks.base import BaseCallbackHandler
from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage
class MyCustomHandler(BaseCallbackHandler):
def on_llm_new_token(self, token: str, **kwargs) -> None:
print(f"My custom handler, token: {token}")
# To enable streaming, we pass in `streaming=True` to the ChatModel constructor
# Additionally, we pass in a list with our custom handler
chat = ChatOpenAI(max_tokens=25, streaming=True, callbacks=[MyCustomHandler()])
chat([HumanMessage(content="Tell me a joke")])
API Reference:
- BaseCallbackHandler from
langchain.callbacks.base
- ChatOpenAI from
langchain.chat_models
- HumanMessage from
langchain.schema
My custom handler, token:
My custom handler, token: Why
My custom handler, token: don
My custom handler, token: 't
My custom handler, token: scientists
My custom handler, token: trust
My custom handler, token: atoms
My custom handler, token: ?
My custom handler, token:
My custom handler, token: Because
My custom handler, token: they
My custom handler, token: make
My custom handler, token: up
My custom handler, token: everything
My custom handler, token: .
My custom handler, token:
AIMessage(content="Why don't scientists trust atoms? \n\nBecause they make up everything.", additional_kwargs={}, example=False)