FAISS
Facebook AI Similarity Search (Faiss) is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any size, up to ones that possibly do not fit in RAM. It also contains supporting code for evaluation and parameter tuning.
This notebook shows how to use functionality related to the FAISS
vector database.
#!pip install faiss
# OR
pip install faiss-cpu
We want to use OpenAIEmbeddings so we have to get the OpenAI API Key.
import os
import getpass
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
# Uncomment the following line if you need to initialize FAISS with no AVX2 optimization
# os.environ['FAISS_NO_AVX2'] = '1'
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.document_loaders import TextLoader
API Reference:
- OpenAIEmbeddings from
langchain.embeddings.openai
- CharacterTextSplitter from
langchain.text_splitter
- FAISS from
langchain.vectorstores
- TextLoader from
langchain.document_loaders
from langchain.document_loaders import TextLoader
loader = TextLoader("../../../state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
API Reference:
- TextLoader from
langchain.document_loaders
db = FAISS.from_documents(docs, embeddings)
query = "What did the president say about Ketanji Brown Jackson"
docs = db.similarity_search(query)
print(docs[0].page_content)
Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections.
Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service.
One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court.
And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.
Similarity Search with score​
There are some FAISS specific methods. One of them is similarity_search_with_score
, which allows you to return not only the documents but also the distance score of the query to them. The returned distance score is L2 distance. Therefore, a lower score is better.
docs_and_scores = db.similarity_search_with_score(query)
docs_and_scores[0]
(Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt'}),
0.36913747)
It is also possible to do a search for documents similar to a given embedding vector using similarity_search_by_vector
which accepts an embedding vector as a parameter instead of a string.
embedding_vector = embeddings.embed_query(query)
docs_and_scores = db.similarity_search_by_vector(embedding_vector)
Saving and loading​
You can also save and load a FAISS index. This is useful so you don't have to recreate it everytime you use it.
db.save_local("faiss_index")
new_db = FAISS.load_local("faiss_index", embeddings)
docs = new_db.similarity_search(query)
docs[0]
Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt'})
Merging​
You can also merge two FAISS vectorstores
db1 = FAISS.from_texts(["foo"], embeddings)
db2 = FAISS.from_texts(["bar"], embeddings)
db1.docstore._dict
{'068c473b-d420-487a-806b-fb0ccea7f711': Document(page_content='foo', metadata={})}
db2.docstore._dict
{'807e0c63-13f6-4070-9774-5c6f0fbb9866': Document(page_content='bar', metadata={})}
db1.merge_from(db2)
db1.docstore._dict
{'068c473b-d420-487a-806b-fb0ccea7f711': Document(page_content='foo', metadata={}),
'807e0c63-13f6-4070-9774-5c6f0fbb9866': Document(page_content='bar', metadata={})}
Similarity Search with filtering​
FAISS vectorstore can also support filtering, since the FAISS does not natively support filtering we have to do it manually. This is done by first fetching more results than k
and then filtering them. You can filter the documents based on metadata. You can also set the fetch_k
parameter when calling any search method to set how many documents you want to fetch before filtering. Here is a small example:
from langchain.schema import Document
list_of_documents = [
Document(page_content="foo", metadata=dict(page=1)),
Document(page_content="bar", metadata=dict(page=1)),
Document(page_content="foo", metadata=dict(page=2)),
Document(page_content="barbar", metadata=dict(page=2)),
Document(page_content="foo", metadata=dict(page=3)),
Document(page_content="bar burr", metadata=dict(page=3)),
Document(page_content="foo", metadata=dict(page=4)),
Document(page_content="bar bruh", metadata=dict(page=4)),
]
db = FAISS.from_documents(list_of_documents, embeddings)
results_with_scores = db.similarity_search_with_score("foo")
for doc, score in results_with_scores:
print(f"Content: {doc.page_content}, Metadata: {doc.metadata}, Score: {score}")
API Reference:
- Document from
langchain.schema
Content: foo, Metadata: {'page': 1}, Score: 5.159960813797904e-15
Content: foo, Metadata: {'page': 2}, Score: 5.159960813797904e-15
Content: foo, Metadata: {'page': 3}, Score: 5.159960813797904e-15
Content: foo, Metadata: {'page': 4}, Score: 5.159960813797904e-15
Now we make the same query call but we filter for only page = 1
results_with_scores = db.similarity_search_with_score("foo", filter=dict(page=1))
for doc, score in results_with_scores:
print(f"Content: {doc.page_content}, Metadata: {doc.metadata}, Score: {score}")
Content: foo, Metadata: {'page': 1}, Score: 5.159960813797904e-15
Content: bar, Metadata: {'page': 1}, Score: 0.3131446838378906
Same thing can be done with the max_marginal_relevance_search
as well.
results = db.max_marginal_relevance_search("foo", filter=dict(page=1))
for doc in results:
print(f"Content: {doc.page_content}, Metadata: {doc.metadata}")
Content: foo, Metadata: {'page': 1}
Content: bar, Metadata: {'page': 1}
Here is an example of how to set fetch_k
parameter when calling similarity_search
. Usually you would want the fetch_k
parameter >> k
parameter. This is because the fetch_k
parameter is the number of documents that will be fetched before filtering. If you set fetch_k
to a low number, you might not get enough documents to filter from.
results = db.similarity_search("foo", filter=dict(page=1), k=1, fetch_k=4)
for doc in results:
print(f"Content: {doc.page_content}, Metadata: {doc.metadata}")
Content: foo, Metadata: {'page': 1}