Skip to main content

Elasticsearch

Walkthrough of how to generate embeddings using a hosted embedding model in Elasticsearch

The easiest way to instantiate the ElasticsearchEmbeddings class it either

  • using the from_credentials constructor if you are using Elastic Cloud
  • or using the from_es_connection constructor with any Elasticsearch cluster
pip -q install elasticsearch langchain
import elasticsearch
from langchain.embeddings.elasticsearch import ElasticsearchEmbeddings

API Reference:

# Define the model ID
model_id = "your_model_id"

Testing with from_credentials

This required an Elastic Cloud cloud_id

# Instantiate ElasticsearchEmbeddings using credentials
embeddings = ElasticsearchEmbeddings.from_credentials(
model_id,
es_cloud_id="your_cloud_id",
es_user="your_user",
es_password="your_password",
)
# Create embeddings for multiple documents
documents = [
"This is an example document.",
"Another example document to generate embeddings for.",
]
document_embeddings = embeddings.embed_documents(documents)
# Print document embeddings
for i, embedding in enumerate(document_embeddings):
print(f"Embedding for document {i+1}: {embedding}")
# Create an embedding for a single query
query = "This is a single query."
query_embedding = embeddings.embed_query(query)
# Print query embedding
print(f"Embedding for query: {query_embedding}")

Testing with Existing Elasticsearch client connection

This can be used with any Elasticsearch deployment

# Create Elasticsearch connection
es_connection = Elasticsearch(
hosts=["https://es_cluster_url:port"], basic_auth=("user", "password")
)
# Instantiate ElasticsearchEmbeddings using es_connection
embeddings = ElasticsearchEmbeddings.from_es_connection(
model_id,
es_connection,
)
# Create embeddings for multiple documents
documents = [
"This is an example document.",
"Another example document to generate embeddings for.",
]
document_embeddings = embeddings.embed_documents(documents)
# Print document embeddings
for i, embedding in enumerate(document_embeddings):
print(f"Embedding for document {i+1}: {embedding}")
# Create an embedding for a single query
query = "This is a single query."
query_embedding = embeddings.embed_query(query)
# Print query embedding
print(f"Embedding for query: {query_embedding}")