Prediction Guard
pip install predictionguard langchain
import os
import predictionguard as pg
from langchain.llms import PredictionGuard
from langchain import PromptTemplate, LLMChain
API Reference:
- PredictionGuard from
langchain.llms
Basic LLM usage
# Optional, add your OpenAI API Key. This is optional, as Prediction Guard allows
# you to access all the latest open access models (see https://docs.predictionguard.com)
os.environ["OPENAI_API_KEY"] = "<your OpenAI api key>"
# Your Prediction Guard API key. Get one at predictionguard.com
os.environ["PREDICTIONGUARD_TOKEN"] = "<your Prediction Guard access token>"
pgllm = PredictionGuard(model="OpenAI-text-davinci-003")
pgllm("Tell me a joke")
Control the output structure/ type of LLMs
template = """Respond to the following query based on the context.
Context: EVERY comment, DM + email suggestion has led us to this EXCITING announcement! 🎉 We have officially added TWO new candle subscription box options! 📦
Exclusive Candle Box - $80
Monthly Candle Box - $45 (NEW!)
Scent of The Month Box - $28 (NEW!)
Head to stories to get ALLL the deets on each box! 👆 BONUS: Save 50% on your first box with code 50OFF! 🎉
Query: {query}
Result: """
prompt = PromptTemplate(template=template, input_variables=["query"])
# Without "guarding" or controlling the output of the LLM.
pgllm(prompt.format(query="What kind of post is this?"))
# With "guarding" or controlling the output of the LLM. See the
# Prediction Guard docs (https://docs.predictionguard.com) to learn how to
# control the output with integer, float, boolean, JSON, and other types and
# structures.
pgllm = PredictionGuard(
model="OpenAI-text-davinci-003",
output={
"type": "categorical",
"categories": ["product announcement", "apology", "relational"],
},
)
pgllm(prompt.format(query="What kind of post is this?"))
Chaining
pgllm = PredictionGuard(model="OpenAI-text-davinci-003")
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["question"])
llm_chain = LLMChain(prompt=prompt, llm=pgllm, verbose=True)
question = "What NFL team won the Super Bowl in the year Justin Beiber was born?"
llm_chain.predict(question=question)
template = """Write a {adjective} poem about {subject}."""
prompt = PromptTemplate(template=template, input_variables=["adjective", "subject"])
llm_chain = LLMChain(prompt=prompt, llm=pgllm, verbose=True)
llm_chain.predict(adjective="sad", subject="ducks")