Skip to main content

PromptLayer

PromptLayer

PromptLayer is a an LLM observability platform that lets you visualize requests, version prompts, and track usage. In this guide we will go over how to setup the PromptLayerCallbackHandler.

While PromptLayer does have LLMs that integrate directly with LangChain (eg PromptLayerOpenAI), this callback is the recommended way to integrate PromptLayer with LangChain.

See our docs for more information.

Installation and Setup

pip install promptlayer --upgrade

Getting API Credentials

If you do not have a PromptLayer account, create one on promptlayer.com. Then get an API key by clicking on the settings cog in the navbar and set it as an environment variabled called PROMPTLAYER_API_KEY

Usage

Getting started with PromptLayerCallbackHandler is fairly simple, it takes two optional arguments:

  1. pl_tags - an optional list of strings that will be tracked as tags on PromptLayer.
  2. pl_id_callback - an optional function that will take promptlayer_request_id as an argument. This ID can be used with all of PromptLayer's tracking features to track, metadata, scores, and prompt usage.

Simple OpenAI Example

In this simple example we use PromptLayerCallbackHandler with ChatOpenAI. We add a PromptLayer tag named chatopenai

import promptlayer  # Don't forget this 🍰
from langchain.callbacks import PromptLayerCallbackHandler
from langchain.chat_models import ChatOpenAI
from langchain.schema import (
HumanMessage,
)

chat_llm = ChatOpenAI(
temperature=0,
callbacks=[PromptLayerCallbackHandler(pl_tags=["chatopenai"])],
)
llm_results = chat_llm(
[
HumanMessage(content="What comes after 1,2,3 ?"),
HumanMessage(content="Tell me another joke?"),
]
)
print(llm_results)

API Reference:

GPT4All Example

import promptlayer  # Don't forget this 🍰
from langchain.callbacks import PromptLayerCallbackHandler

from langchain.llms import GPT4All

model = GPT4All(model="./models/gpt4all-model.bin", n_ctx=512, n_threads=8)

response = model(
"Once upon a time, ",
callbacks=[PromptLayerCallbackHandler(pl_tags=["langchain", "gpt4all"])],
)

API Reference:

In this example we unlock more of the power of PromptLayer.

PromptLayer allows you to visually create, version, and track prompt templates. Using the Prompt Registry, we can programatically fetch the prompt template called example.

We also define a pl_id_callback function which takes in the promptlayer_request_id and logs a score, metadata and links the prompt template used. Read more about tracking on our docs.

import promptlayer  # Don't forget this 🍰
from langchain.callbacks import PromptLayerCallbackHandler
from langchain.llms import OpenAI


def pl_id_callback(promptlayer_request_id):
print("prompt layer id ", promptlayer_request_id)
promptlayer.track.score(
request_id=promptlayer_request_id, score=100
) # score is an integer 0-100
promptlayer.track.metadata(
request_id=promptlayer_request_id, metadata={"foo": "bar"}
) # metadata is a dictionary of key value pairs that is tracked on PromptLayer
promptlayer.track.prompt(
request_id=promptlayer_request_id,
prompt_name="example",
prompt_input_variables={"product": "toasters"},
version=1,
) # link the request to a prompt template


openai_llm = OpenAI(
model_name="text-davinci-002",
callbacks=[PromptLayerCallbackHandler(pl_id_callback=pl_id_callback)],
)

example_prompt = promptlayer.prompts.get("example", version=1, langchain=True)
openai_llm(example_prompt.format(product="toasters"))

API Reference:

That is all it takes! After setup all your requests will show up on the PromptLayer dashboard. This callback also works with any LLM implemented on LangChain.